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CVD growth, this field variable is gas phase reactant con-
centration. The Galerkin finite element method is used toA procedure is described for numerical solution of free-boundary

problems where highly nonlinear boundary shapes develop. A sim- solve the domain problem, while finite difference tech-
ple explicit solution method is used, and special attention is given niques are used for time stepping and to account for the
to two aspects. The first is the introduction of a parametrization, changing shape of the moving boundary. Highly nonlinear
which stretches the boundary/interface and allows tracing the devel-

or distorted gas–solid interface shapes are possible, whichopment of interface shapes beyond the point where a single-valued
necessitates the use of an appropriate interface representa-representation becomes inappropriate. The second is a procedure

for automatic generation of a mesh for discretizing the domain tion and introduces complications with discretization of
above a highly nonlinear interface. Examples of the evolution of the two-dimensional (2D) domain above it. We therefore
a gas–solid interface during solid film growth by chemical vapor focus on two aspects of the numerical solution procedure,
deposition are used to illustrate application of the solution method.

namely the choice of an appropriate parametrization forThe effect of different values of mesh generation parameters on
representing the interface and an automatic mesh-genera-placement of nodes are shown, as well as the effect of the number

of nodes along the interface. It was found that in cases with a highly tion scheme for discretizing the 2D domain above the inter-
distorted boundary, the shape of the boundary can be used in the face. Several examples are used to illustrate application of
weight functions to ensure appropriate concentration of nodes in the numerical solution procedure.
groove regions. The number of nodes along the interface is less
crucial than the choice of interface length to be studied. Q 1996 2. BACKGROUND
Academic Press, Inc.

Several approaches have been used in the numerical
solution of Stefan-like problems. One of the earliest was1. INTRODUCTION
relaxation methods used for determining percolation of
fluid through porous media, as described by SouthwellFree-boundary problems exist in a wide variety of sys-
[10]. The position of the moving boundary was determinedtems and have received much attention, due to their inher-
iteratively by using one boundary condition as a predictorent mathematical complexity. Numerical solution of these
and the other in the corrector step.systems are complicated by the unknown shape and posi-

The boundary integral technique, which uses Green’stion of one domain boundary, typically an interface be-
theorem to relate changes in the domain to changes alongtween two distinct phases. Examples of such systems in-
the moving boundary [1, 11], has the advantage that theclude free surface waves [1], two-phase flow in porous
position of the boundary can be determined without havingmedia [2], flow in a Hele–Shaw cell [3], solidification from
to discretize the entire domain, and the dimensionality ofa melt [4], flame propagation in gas mixtures [5] and solid–
the problem is reduced by one, resulting in fewer un-solid combustion [6], growth of a solid film during physical
knowns. However, integral methods are generally compu-vapor deposition (PVD) [7], or chemical vapor deposition
tationally more demanding than difference methods, since(CVD) [8].
matrices to be inverted are not sparse or banded. OtherThe present paper describes a procedure for numerical
approaches are based on the classical finite element (orsolution of free-boundary problems, as applied to solid
finite difference) methods for solving field equations on afilm growth during CVD. We restrict our attention to
discretized domain with appropriate boundary conditions.Stefan-like problems [9], in which there is one field variable
The difference is that in free-boundary problems this do-and field equations are linear. In the case of isothermal
main changes shape, since one of its boundaries is the
moving interface. In addition to the usual boundary condi-
tion at the moving interface, another relation is required* Correspondence author.
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to account for its changing shape. The solution is obtained therefore is not transformed, but an adaptive mesh is up-
dated at each time step to trace the changing shape ofin one of the following ways:
the interface. In addition, since we consider cases where

The first option is to map the domain with changing
interface shape is not a single-valued function of one spatial

shape onto a fixed domain by transforming the field equa-
coordinate, a parametrization is introduced which stretches

tions. The problem is then solved by, e.g., the Galerkin
the interface and allows tracing highly nonlinear shapes

finite element method in the transformed domain, and the
without difficulty. The choice of an appropriate parametri-

solution is transformed back to the original domain. This
zation is an important part of the solution procedure and

method has the advantage that mesh generation itself is
will be discussed in more detail later.

simple and needs to be performed only at the start of a
solution run. The disadvantage is that the transformed field 3. MODEL OF INTERFACE EVOLUTION DURING
equations can become significantly more complicated. CHEMICAL VAPOR DEPOSITION (CVD)

The second approach is to use a mesh which changes
shape with the changing interface and to solve the original Consider the growth of an amorphous solid film during
problem in the adaptive mesh. No transformation of field a typical high pressure (1 atm) CVD process. The modeling
equations is necessary, but the mesh shape has to be contin- setup is shown in Fig. 1. Reactants diffuse through a stag-
ually updated to follow the shape of the moving boundary, nant boundary layer to the gas–solid interface, where ad-
which can cause computational difficulties. sorption and desorption take place. Reactants are con-

verted to solid product by a chemical reaction, which isChristodoulou and Scriven [12] reviewed different alge-
assumed to be irreversible and first order with respectbraic and elliptic mesh generation methods, including con-
to the limiting reactant. In addition, surface diffusion offormal mapping, orthogonal mapping, and variational
deposited solid material takes place. This phenomenonmethods, such as that of Brackbill and Saltzmann. They
tends to minimize surface energy and therefore flattenshighlighted some drawbacks to these methods and pro-
protrusions and fills up grooves. It can be regarded as aposed a new elliptic mesh generation method, which com-
stabilizing effect for planar film growth. On the other hand,bines optimization of the mesh with an orthogonality mea-
the shorter diffusion length to tips of protrusions tends tosure directly related to the discretization error. Tsiveriotis
enhance growth there and destabilizes planar film growth.and Brown [13] pointed out that the resulting equations
A balance between these opposing effects leads to thewere not fundamentally different than those derived by
development of a characteristic interface shape.Brackbill and Saltzmann and that the adaption part of the

The modeling and computational domain is the stagnantequations were hyperbolic, leading to an ill-posed bound-
gas boundary layer above the moving interface. A moreary value problem for high parameter values. Tsiveriotis
detailed description of the three-dimensional (3D) modeland Brown then proposed a two-step mapping procedure
formulation is given in Viljoen et al. [8]. The two-dimen-called the ‘‘mixed mapping method’’ (MMM), which is
sional (2D) model can be summarized as follows (in dimen-particularly suited to mapping the region inside highly de-
sionless form):formed cells. The method was shown to overcome the

problems associated with other variational methods. The gas phase governing equation:
Ettouney and Brown [14] reviewed different numerical

solution approaches for Stefan-like solidification problems, ­C

­t
5

1
Pe

(=2C) (1)both linear and nonlinear. They found that the Galerkin
finite element method is ideally suited to solving Stefan-
like problems, since the flux boundary conditions at the with boundary conditions
moving interface are easily incorporated as natural condi-
tions for the Galerkin residual equations. They also found
that the choice of boundary condition distinguished for
locating the position of the interface played an important
role in determining the accuracy of results.

The present study deals with unsteady growth of solid

C 5 1 at z 5
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(=C · n) 5 h Da C (1 1 k) at z 5 H,
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ux50 5

­C
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ux5nl/G ,

C (0, z) 5 CSnl
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, zD with n 5 0, 61, 62, ...,

(2)
films from the vapor phase, an initial-boundary value prob-
lem. We illustrate the use of an explicit solution scheme,
as applied to the evolution of highly nonlinear interface
shapes, such as those observed during diffusion-limited
CVD growth. The field equation (with reactant concentra-
tion as field variable) is solved in the physical coordinates where k represents the dimensionless curvature and the

dimensionless parameters are defined asby the Galerkin finite element method. The field equation
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FIG. 1. Modeling setup of growing film during CVD.

the arc-length along the interface. An important character-
Pe 5

V0G

Df
, Da 5

Kd
Df

, h 5
G

d
. istic of Eq. (3) is that the term ­2k/­s 2 represents a highly

nonlinear fourth-order spatial derivative, as Eq. (5) in the
next section will show. This is not common for diffusion-Other symbols are defined in the Appendix.
like terms, which are usually second-order and can causeAn additional boundary condition is necessary to calcu-
problems with discretization, as well as computational dif-late the shape and position of the interface and in the
ficulties.present case it is a mass balance in the solid phase at the

moving interface. The solid phase equation expressed in
terms of local interface velocity, v, takes the form

4. NUMERICAL SOLUTION

v 5
bCbh Da

Pe
C(1 1 k) 2

f

Pe
­2k

­s 2 , (3) A time scale analysis of the system reveals that the char-
acteristic time for gas diffusion is much shorter than that
for interface evolution, which suggests that the gas phase is

where in pseudo-steady state with respect to changes in interface
shape [15]. Therefore, the problem is followed on the time
scale of interface evolution and the concentration field is

f 5
D*s
Df G

, D*s 5 Ds Va.
determined as steady state at each time step. Solution of
the field equation and interface shape is performed in suc-
cessive steps, therefore, by an explicit method.The parameter k represents interface curvature, and s is



FREE-BOUNDARY PROBLEMS: FILM GROWTH DURING CVD 265

4.1. Choice of Parametrization ents. A multi-valued function in the horizontal coordinate
becomes a single-valued function in the arc-length of the

In cases where the surface remains fairly smooth and
curve. Therefore, the arc-length (say s) is introduced as a

no deep grooves develop, a single-valued representation
new independent variable and the original independent

of the interface may be used. The interface is expressed
variable (say x) becomes a dependent variable. The rela-

as a function of a parameter, s, where the parameter is
tion between x and s introduces an additional equation

chosen as the horizontal coordinate, x. A geometric conver-
and the original system of equations are transformed and

sion is used to convert normal growth to vertical displace-
expressed in terms of the arc-length s. The problem is

ment. In the case of CVD growth, let the flux of solid
solved in terms of the new parameter s, which proves

material contributing to film growth be c(H, C ), and the
computationally more convenient in the region of steep

effect of surface diffusion x(H ), where these terms can
gradients than the original system. The method has proved

depend on interface shape, H, and concentration at the
to be a very useful tool in continuation methods and, e.g.,

interface, C. Then
for tracing solution branches in bifurcation diagrams [19].

The arc-length seems an appropriate parameter for ex-
zt 5 Ï1 1 z 2

x (c(H, C ) 1 x(H )), (4) pressing interface position during CVD growth. However,
in an initial-boundary value problem it has the disadvan-

where subscripts denote derivatives with respect to that tage that the total arc-length changes with time and its
variable. For free-boundary systems, in general, c(H, C ) value at each point in time is not known a priori. An
can be thought of as any phenomenon contributing to appropriate choice of parameter is one which has a fixed
translation of the interface normal to its previous position, total length independent of time and which can be discre-
which can depend on distribution of the field variable at tized into an equidistant grid. The normalized arc-length
the interface and the shape of the interface. In solidification satisfies all the requirements, since its range is constant and
problems, for example, it would be a thermal gradient or known a priori (it is chosen arbitrarily), and the position of
flux of heat. The term x(H ) represents a surface tension the interface is a unique function of s. This means that
term, which usually depends on local curvature of the inter- the gradients ­x/­s and ­z/­s cannot approach infinity as
face and tends to limit the size of protrusions and minimize in the former case where s was chosen as x. As a simple
surface energy. In the present solid growth system, the example, consider the interface shown in Fig. 2a in the
effect of surface diffusion is proportional to the second conventional Cartesian representation. Clearly the inter-
derivative of curvature with respect to arc-length along the face cannot be expressed as a function of either coordinate.
curve [16]; thus x Y ­2k/­s 2. In terms of x and z, By introducing the normalized arc-length as new indepen-

dent variable, the interface is stretched and its horizontal
and vertical coordinates become single-valued functions­2k

­s 2 5 2
1

Ï1 1 z 2
x
S kx

Ï1 1 z 2
x
D

x
, (5) of the new parameter, s (see Figs. 2b and 2c).

In the numerical solution procedure, the interface is
discretized into an equidistant grid with a predeterminedwhere interface curvature is defined as
number of points and spatial derivatives at each point are
represented by appropriate finite difference formuli. The
relation between s and the position of the interface is notk 5

zxx

(1 1 z 2
x )3/2 .

an analytical function, since the interface position is known
only at discrete values of the parameter, but this is not a
limitation. All the important quantities can be expressedIt is clear that this formulation becomes inappropriate

when interface gradients become very large; thus when in discrete form in terms of the parameter, s. The first is
the arc-length s, which is needed in the determination ofzx R y. In the present study we will illustrate the use of

a more appropriate choice of parameter, which will permit the effect of surface diffusion. It can be defined as
the tracing of highly nonlinear interface shapes. For initial
or boundary value problems where steep gradients and s(s) 5 Es

0
Ïx 2

§ 1 z 2
§ d§.

large curvatures are encountered, e.g., in flame and com-
bustion problems, the so-called arc-length strategy has typi-

Since growth is normal to the interface, it is also importantcally been used [17, 18]. In this technique, a function, such
to have expressions for the tangential and normal unitas the position of the interface, is not expressed in terms
vectors. These areof the horizontal coordinate, since this can lead to problems

in regions of steep gradients. Instead, the function is ex-
pressed in terms of its change along the arc-length of the t 5 S xs

Ïx 2
s 1 z 2

s

;
zs

Ïx 2
s 1 z 2

s

D
curve, which stretches the curve and eliminates steep gradi-
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FIG. 2. Example of stretching interface and transforming a multi-valued function into a single-valued representation by introducing normalized
arc-length as parameter: (a) Cartesian representation; (b), (c) parametric form.
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The change in position of the interface is now given by
The curvature is defined as

­x
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5
2zs
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s

(c(H, C ) 1 x(H )) (6)
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(c(H, C ) 1 x(H )), (7)
which is equivalent to
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where c(H, C ) and x(H ) are now expressed in terms of variational method proposed by Brackbill and Saltzmann
[22]. In the latter, functionals are introduced that providethe parameter s. All derivatives are also with respect to

s, so an appropriate choice of s is one where xs and zs measures of grid smoothness,
remain finite at all times.

Is 5 E
D

[(=j)2 1 (=z)2] dV,
4.2. Automatic Mesh Generation

grid orthogonality,The present study deals with the solution of field equa-
tions in a domain which continuously changes shape, due
to the changing shape of one of its boundaries. Instead of Io 5 E

D
[(=j · =z)2J 3 dV,

mapping this deforming domain onto a fixed domain, the
problem is solved in the original domain. This necessitates

and weighted volume variation,the generation of a new mesh with each step in time, which
can be very time-consuming. It is therefore necessary to

Iv 5 E
D

wJ dV.use an efficient automatic mesh generation scheme.
The mesh generation problem requires the placement

of nodes inside a domain and along its four boundaries in The mesh is a mapping of the physical x and z coordinates
such a way that the resulting elements have shapes and onto a computational domain and j and z, where J 5
connectivity which will ensure an appropriate finite ele- xj zz 2 xz zj represents the Jacobian of the mapping. The
ment representation. The aim is to obtain quadrilateral functional Iv measures the global property of adaption as
cells as close as possible to rectangles (no angles close to represented by the weight function w 5 w(x, z). Minimiza-
08 or 1808) with aspect ratios preferably smaller than 10 tion of Iv results in small cell sizes wherever w is large,
to 1. Three boundaries of the domain are straight lines which ensures appropriate adaption. Integrals Is and Io
and the fourth coincides with the moving interface, which ensure there are no rapid variations in cell sizes and keep
can assume virtually any shape. At each point in time the grid lines close to orthogonal. A weighted average of the
location of all four boundaries will be known, and mesh three functionals are used,
generation becomes a problem of distributing interior
nodes in an appropriate way. Accordingly, one can define I 5 Is 1 lv Iv 1 lo Io ,
three optimization criteria for placement of interior nodes.
These are: (i) adaption, (ii) smoothness, and (iii) orthogo- where the scalar weights lv and lo provide a means to
nality. The first criterion refers to concentrating nodes in control the relative importance of each of the mesh proper-
specific regions inside the domain, e.g., close to one of the ties. Application of the Euler–Lagrange equations for the
boundaries. This is done to ensure sufficient resolution in minimization of I yields a nonlinear system of coupled
areas where severe changes or steep gradients are antici- elliptic partial differential equations, which have to be
pated, such as is the case in combustion problems [20]. For solved for the x and z positions of the grid points.
CVD growth, reactant concentration close to the interface In the discrete method, formulation of the adaptive mesh
is important for determining interface dynamics and it is generator can be considered as minimization of an objec-
desirable to put more nodes close to this boundary. In tive function E [20, 23], which is the discrete form of I and
addition, the number of points along the interface may be depends on all grid positions xi, j and zi, j . The condition for
larger than that in the vertical direction (up to 10 to 1), the minimum is
which means strong adaption is necessary at the interface
to ensure acceptable aspect ratios of elements in that
region. 0 5 dE 5 OM11

j51
ON11

i51
F ­E

­xi, j
dxi, j 1

­E
­zi, j

dzi, jG , (8)
Smoothness refers to the requirement that there should

be a gradual change in cell size, since any rapid variations
resulting in the mesh generator equations for each point,lead to inaccuracies [21]. The orthogonality criterion

strives to make all cell angles 908, which improves solution
accuracy. In determining the position of interior nodes, ­E

­xi, j
5 0,

­E
­zi, j

5 0.
the mesh generation scheme optimizes measurable quanti-
ties of these three criteria, expressed in terms of the posi-
tions of nodes. Different scalar weights are assigned to These equations are nonlinear in the node coordinates x

and z and have to be solved iteratively. Implementationeach criterion, depending on its importance, and these are
combined into one objective function. of this method is computationally very expensive as a result

of inversion of large matrices. Fortunately, determinationThe procedure is essentially a discrete version of the
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TABLE I where the parameter e varies linearly from e 5 0.0 to
e 5 1.0 along the lines connecting nodes on the interfaceComputational Requirements for Different Parts of the
with those on the top boundary. This mesh can be consid-Solution Procedure
ered a base case, since nodes are not concentrated in any

Time units specific area. The distribution of points seems very good
Solution component (normalized) per iteration and the distortion of elements not very significant. The

orthogonality of lines can be increased by increasing theMesh generation 2.4
value of lo and decreasing lv , which results in the meshSolution of field equation 36

Time integration, recordkeeping 1.0 shown in Fig. 3b. The parameters are

w(x, z) 5 1 1 lv exp(2te)

t 5 0of the exact location of the grid points is not crucial, as
long as critical parts of the physical solution are well re-

lv 5 3
solved. This means one can use fewer iterations than is
necessary for convergence. The mesh also does not change lo 5 15.
much from one time step to the next, which allows the use
of simpler approximations, such as solution by point-Jacobi The orthogonality of lines has indeed improved, but the

distribution of points is less ideal. In addition, fewer nodesiterations or the ADI (alternating direction implicit)
method [23]. Both simplifications are computationally are placed close to the interface than in the previous mesh.

In CVD growth cases, it is important to place more nodesmuch less demanding, but they lead to reduced coupling
between grid points, which means more iterations are nec- close to the curved boundary (which represents the gas–

solid interface), since the concentration field in this regionessary. It takes several iterations before a point is affected
by what happens on the other side of the grid. In our is crucial to determining the dynamics of the interface.

A good balance between adaption and orthogonality issystem, generation of the initial mesh at t 5 0 may require
100 ADI iterations. However, since the mesh changes only obtained by the set of values
slightly at every time step, a typical number of iterations
required at t . 0 is 20. Table I gives an indication of the w(x, z) 5 1 1 lv exp(2te)
computational time requirements of different parts of the

t 5 2
solution procedure. Assume for one complete cycle that
we need the following number of iterations: 20 for mesh lv 5 100
generation, 1 for solution of the field equation, and 20 for

lo 5 15,
time integration. This means that the computational time
will be divided as follows: 46% for mesh generation, 35%

as shown by the mesh in Fig. 3c. More nodes are placed
for solution of field equation, and 19% for time integration.

close to the interface, and the distribution of points seems
The following examples illustrate application of the au-

good. A simple quantitative measure of how closely nodes
tomatic mesh generator and show the effect of adaption

follow the curved boundary is the aspect ratio of elements
and orthogonality. Figure 3 shows three meshes generated

close to or at that boundary. The larger the aspect ratio,
for the domain above a simple interface shape. The ADI

the closer the nodes are to the boundary. For the three
method is used to determine the position of the interior

meshes in Fig. 3, Table II shows the difference in average
nodes on a 50 3 20 element mesh. Adaption is accounted

aspect ratio at the curved boundary.
for by the weight function, w(x, z), and orthogonality by

Now consider an example where the interface shape is
the scalar weight, lo , while smoothness is not explicitly

more distorted. With parameters identical to those in Fig.
accounted for by a separate scalar weight. It does, however,
enter into the determination of w(x, z) by using an expo-
nential form where the magnitude of the exponent is con-

TABLE IItrolled by the user. The parameters chosen for generating
Comparison of Aspect Ratios for Elements atthe mesh in Fig. 3a are

Curved Boundary

w(x, z) 5 1 1 lv exp(2te)
Mesh Average aspect ratio

t 5 0
Fig. 3a 1.94
Fig. 3b 3.43lv 5 300
Fig. 3c 6.12

lo 5 3,
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FIG. 3. Effect of orthogonality and different weights of adaption on mesh generation.

3c and a 100 3 20 element mesh, the result is shown in account of the actual shape of the interface, only of the
relative position of a node along the lines connecting theFig. 4a. It is clear that a set of parameters which resulted

in a well-distributed mesh for a simple interface shape, interface to the top of the domain. Let us attempt to con-
centrate nodes in areas of deep grooves by using the nor-does not necessarily work well for a more demanding case.

Although the overall distribution of points is good, the malized height of the interface in the adaption function.
Therefore, use a function h, where h 5 1.0 at the bottomnodes do not trace the interface shape closely enough in

deep grooves. It is therefore desirable to be able to identify of the deepest groove and h 5 0.0 at the top of the highest
protrusion. As an extreme case, consider the followingregions with deep grooves and to adjust the weight func-

tions accordingly. The examples so far have not taken choice of parameters:
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FIG. 4. Examples of mesh generation when interface shape is highly nonlinear.

w(x, z) 5 1 1 lv h discussed above. Therefore use both the relative position
of a node along the connecting lines and the shape of the

lv 5 200
interface. By using the set of parameters

lo 5 3.
w(x, z) 5 1 1 lv exp(2te)(aQ; 1 h(1 2 e))

t 5 1The resulting mesh is shown in Fig. 4b. The grooves are
better covered by the nodes, but the overall distribution

lv 5 200
of points is poor. A well-balanced distribution of points
can be obtained by combining the two forms of adaption lo 5 2,
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TABLE III into the solid phase mass balance, which is used to describe
its movement. This equation contains terms with spatialComparison of Aspect Ratios for Elements at
derivatives expressed in terms of the parameter s, whicha Highly Distorted Boundary
we take as the normalized arc-length. The interface is dis-

Mesh Average aspect ratio cretized on an equidistant grid in s, and derivatives are
expressed in a finite difference form. A fourth-order

Fig. 4a 5.78
Runge–Kutta scheme is used for time integration. WithFig. 4b 3.04
each time step, the interface position changes and a newFig. 4c 8.37
mesh has to be generated for the gas domain. The field
equation is then solved again to determine the new concen-
tration field, after which the position of the interface at
the next time step can be determined. The concentrationwe obtain the mesh shown in Fig. 4c, which seems to have
field and interface position are therefore determined ina good distribution of points, while placing more nodes in
successive steps, and the solution scheme is explicit. Thisgroove areas. A comparison of the average aspect ratios
procedure is repeated until the desired deposition timeat the curved boundary for the three meshes in Fig. 4 is
is reached.given in Table III.

As an example, consider the growth of a solid film fromOther aspects of the automatic mesh generation proce-
an arbitrary interface with random roughness [24] underdure are also important. Since the position of a node de-
conditions leading to gas diffusional limitations. Typicalpends on the relative position of all other nodes, a change
values of the system parameters are used. These are:in any parameter affects the whole distribution of nodes.

For example, increasing the number of nodes from a
50 3 20 mesh to a 100 3 20 mesh does not simply result
in dividing each element in half, as would be the case in
a regular fixed domain. In addition, one cannot assume
that a set of parameters which seems ideal for one case,
can simply be extrapolated to other cases. However, the
functional form and parameters used to generate the mesh

Pe 4.62 3 1025

h 4.95 3 1029

Da 50.0

G (em) 4.95 3 1026

l (em) 250.0

bCb 9.51 3 1027

f 85.6

time (s) 3000

in Fig. 4c were found to be satisfactory for all the CVD
cases we considered. Undoubtedly, one of the key aspects
of the solution procedure is to choose mesh generation
parameters which will ensure a good distribution of nodes
for a wide variety of domain shapes.

5. ILLUSTRATIVE EXAMPLES
Evolution of the interface in time is shown in Fig. 5a and
iso-concentration lines at the end of the run in Fig. 5b.The methods discussed above are combined into a nu-

merical solution procedure which can be used for studying The results show that a highly nonlinear interface shape
develops and that the solution procedure is able to followthe evolution of an interface in many free-boundary prob-

lems. Our focus is on solid film growth during CVD ac- its development beyond the point where a single-valued
representation becomes inappropriate. The iso-concentra-cording to the model presented earlier. Specifically, exam-

ples are considered where diffusional limitations lead to a tion lines in Fig. 5b show the depletion of reactant in
grooves under diffusion-limited conditions, which explainsvery nonuniform film structure, with a highly distorted

gas–solid interface. For a specific set of deposition condi- their development and why the film becomes nonuniform.
One should note that the gas domain extends well abovetions and an arbitrary initial interface shape, the numerical

solution procedure is as follows: the cutoff point in the graph and the reactant concentration
at the top boundary is in fact C 5 1.0. The grid used forFor a specific choice of resolution, i.e., the number of

nodes along the interface and the number of quadrilateral generating these results was 300 3 30, with strong adaption
closer to the interface and larger elements far away fromelements inside the domain, an initial mesh is generated

according to the optimization procedure described in the it, where the concentration field does not change rapidly.
Note that boundary conditions are periodic and theprevious section. The field equation is then solved in steady

state by the Galerkin finite element method with appro- length of film or substrate considered can be chosen arbi-
trarily. However, one has to ensure that a sufficiently largepriate boundary conditions to determine the reactant con-

centration field in the gas phase. The concentration values part of the substrate is considered so that the boundaries
do not affect development of the film structure. A rule ofat the interface, as well as the shape of the interface, enter
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FIG. 5. Example of film growth during diffusion-limited CVD: (a) interface evolution; (b) iso-concentration lines at end of run.

thumb is to choose a length of substrate which is more start, which may be computationally very expensive. Alter-
natively, the number of points can be increased as the totalthan 10 times the wavelength of the most unstable pertur-

bation, lm , as predicted by a linear stability analysis [24]. arc-length increases, thus keeping the resolution essentially
constant. Usually in an explicit solution scheme, extremelyThis ensures that several nodules can develop without be-

ing affected by computational boundaries. In the present small time steps are required to ensure solution stability.
The critical time step depends on the size of space stepsexample lm 5 35.8 em and the length of substrate consid-

ered is l 5 500 em. To further illustrate this point, consider and the order of derivatives in the governing equation,
and they can be calculated a priori in a fixed grid problemfilm growth under the same conditions as before, but using

two different lengths of computational domain. The first with constant coefficients [25]. In the present case of CVD
growth, it should be noted that spatial derivatives up tocase is a substrate of 50 em with random roughness, and

the second case is a substrate of 500 em with identical fourth order are present, which is apparent if the interface
mass balance is written in the conventional coordinateroughness. Deposition conditions are the same for both

cases. The results are shown in Figs. 6a and 6b. Note that system. This is similar to what was encountered in some
flame propagation problems [26] and means that the rela-the film structures are completely different and the picture

in Fig. 6b is not obtained by simply combining 10 lengths tion between the maximum allowable time step Dt and
grid spacing Dx follows Dt Y (Dx)4. Therefore, there is aof the film in Fig. 6a. They have completely different char-

acteristics. No grooves develop in the case with the 50 em strong incentive from a computational standpoint to limit
the number of nodes along the interface. An interestingsubstrate, while they are very prominent in the 500 em

case. The results suggest that it is very important to con- observation is that the parametrization which leads to
space steps in arc-length (thus Ds), instead of the hori-sider a large enough domain, so that boundary conditions

do not affect the development of the structure and lead zontal coordinate (Dx), seemed to introduce a damping
effect on solution stability. We found that the maximumto unphysical results.

Points on the interface move normal to their previous allowable time step for a specific number of spatial points
could be increased by about 50% if the interface descriptionposition, which means the spacing of points will decrease

in some areas and increase in others. In the present study, is changed from the conventional single-valued H (x) to
the parametric form H (s), with s as the arc-length. Thisthe number of nodes along the interface is kept constant,

and to avoid problems with uneven resolution, the nodes may be due to the frequent rearrangement of points along
the interface in the latter case.along the interface are rearranged in an equidistant distri-

bution each time before the domain solution is obtained. When comparing computational time requirements of
different parts of the solution procedure, one finds thatThis will lead to an overall smooth solution, but it may

cause details in small grooves to be lost. This problem can the mesh generation and Galerkin solution steps are by
far the most time-consuming. The question arises whetherbe avoided by using a large number of points from the
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FIG. 6. Effect of length of domain considered on the development of film structure: (a) 50 em; (b) 500 em, with all other conditions identical.

it is really necessary to perform these steps at each time an example where deposition takes place under the same
conditions as before, but from a different initial interfacestep, since the concentration solution depends on the inter-

face shape, which changes slowly in time. To study this with random roughness and using three cases with different
numbers of nodes: 100, 200, and 400. The results are showneffect, consider an initial interface consisting of a combina-

tion of sine curves with different wavelengths, with deposi- in Fig. 8. They indicate that there is remarkably little differ-
ence in the qualitative picture obtained in the three cases.tion occurring under the same conditions as in Fig. 5. Three

cases with different frequency of updating the domain solu- The number of nodules or fingers which develop is essen-
tially the same in each case, although they are better de-tion are shown in Fig. 7. In the first case, the concentration

solution is obtained at every time step, as shown in Fig. fined when more points are used. There is an 18% differ-
ence in results between the 100 point and 400 point case,7a. If the concentration is updated every five time steps,

the results in Fig. 7b are obtained. The difference in results but only 5.1% difference between the 200 and 400 point
case. The most significant difference between the graphsis hardly noticeable, while a significant savings in computa-

tional time is achieved. If, however, the concentration solu- is in the height of the fingers which develop, and they are
largest in the case with 400 points. Another difference liestion is obtained only every 40 time steps, the results become

more inaccurate and are significantly different, as shown in the development of grooves, which are deeper and better
defined in the case with most points.in Fig. 7c. The most obvious difference is that the width

of the grooves has decreased. Table IV summarizes the The results suggest, that a very good indication of the
interface structure can be obtained by using a relativelydifferences in computational time and accuracy. These re-

sults indicate that it is not necessary to update the concen- coarse mesh, which will lead to significant savings in com-
putational time. What does seem to be important is thetration solution at every time step and that significant sav-

ings in computational time can be achieved without choice of computational domain or length of interface,
sacrificing accuracy. However, care has to be exercised in
doing so and a compromise between accuracy and compu-
tational expense has to be found. TABLE IV

The number of nodes along the interface will also affect
Effect of Frequency of Updating Concentration Solution onthe accuracy of solution. Clearly, the number of points

Computational Requirements and Accuracy
should be large enough to accurately account for the devel-
opment of a highly nonlinear interface structure. A useful Normalized Percentage

Update frequency computational time difference in resultsparameter in choosing the number of points is the wave-
length of most unstable perturbation, lm , which gives a

Every time step 1.0 Base casegood indication of the scale of nodules developing into a
Every 5 time steps 0.21 2.7

characteristic film structure. There should be several points Every 40 time steps 0.04 34
(.10) for each distance of lm along the interface. Consider
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FIG. 7. Effect of updating concentration solution less frequently on the evolution of the interface: (a) update every time step; (b) update every
five time steps; (c) update every 40 time steps.

which must be large enough to allow a representative struc- torted interface shapes. To illustrate application of this
method, we study the growth of solid films during chemicalture to develop. Once this is achieved, refinement of the
vapor deposition (CVD), where a highly nonlinear gas–mesh will improve the results quantitively, but they should
solid interface develops under conditions of diffusion-lim-not change them qualitatively.
ited deposition. Special attention is given to two aspects
of the solution procedure. The first is expression of the6. SUMMARY AND CONCLUSIONS
interface shape in parametric form, which allows the evolu-

In this study we describe a numerical procedure for tion of virtually any shape. The second is an elliptic mesh
generation procedure, which determines the location ofsolution of moving boundary problems with highly dis-
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FIG. 8. Effect of number of points on development of film structure: (a) 100 points; (b) 200 points; (c) 400 points.

nodes inside an arbitrary domain by minimizing an ob- the changing domain. It was expected that the number of
nodes placed along the interface would be critical to thejective function accounting for important mesh prop-

erties. attainment of realistic results and a representative film
structure, but this is not the case. What seems more im-Simulation results show that the relatively simple solu-

tion procedure can be used to follow interface evolution portant is the length of interface or boundary chosen for
simulation. Care should be taken to ensure that this isbeyond the point where a single-valued representation of

the interface fails. It is shown that mesh generation param- large enough to ensure that results are not affected by
boundary conditions.eters can be used to control the placement of nodes inside
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x(H ) surface diffusion termAPPENDIX
V molecular volume, m3

Notation
CVD chemical vapor deposition ACKNOWLEDGMENT
Cb concentration of reactant in bulk flow,

mole/m3 We gratefully acknowledge the contribution Jan Degreve, who devel-
oped a code for adaptive mesh generation used in the calculation ofC reactant concentration
combustion fronts. We modified and used his code in our examples.Df gas diffusion coefficient, m2/s
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